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Abstract. A quantum system is described by a density matrix which determines the joint 
probabilities for simultaneous eigenstates of its observables. Since there do not exist any 
simultaneous eigenstates of non-commuting observables, the density mahix cannot provide any 
information about the joint probability of their eigenstates. The quasiprobability distributions 
(QPDs) constructed by using the density matrix provide a means of determining these joint 
probabilities. Here the QPDS for a system of N spin-f are cnnsmcted and the joint probabilities 
for their compnents determined. 

1. Introduction . -  

The density matrix provides a complete description of a quantum system by determining the 
occupation probability of the eigenstates and the probabilities of transitions between these 
states. It also determines the joint probabilities for simultaneous eigenstates of different 
observables. Since there do not exist any simultaneous eigenstates of non-commuting 
observables, the density matrix cannot provide any information about joint probability of 
occupation of the eigenstates of non-commuting observables. %e importance of the joint 
probabilities in the context of a spin-4 has been highlighted by Feynman [l] in terms 
of a Gedanken two-slit interference experiment. Scully. et a1 [2] have recently proposed 
a micromaser scheme for realizing that experiment. The relationship between the joint 
probabilities for two spin-; and Bell's inequality has been reported by Wigner [3]. 

How can one then determine the joint probability for non-commuting observables? 
The answer lies, of course, in building a description of the quantum system in terms of 
commuting, i.e: c-number, variables. Since the quantum predictions are probabilistic, the 
c-number equivalence will be in terms of probability distribution functions. That approach, 
initiated by Wigner [4], has been the key, not only as an operational tool, but also to 
the understanding of the relationship between classical and quantum mechanics. Since 
the quantum indeterminism is not the same as the classical statistical one, the c-number 
distribution functions may 'not always possess the properties of a classical probability 
distribution function. Those are,, therefore, referred to as the quasiprobability distributions 
(QPDS). The QPDS may, for example, be negative. However, they should, and do, give 
meaningful results for observable quantities. 

The QPDS have been constructed for systems of spins 15-71. There, however, they are 
in terms of the variables which have no direct relationship with the eigenvalues of the 
observables of interest, namely the projection of the spin in an arbitrary direction. Those 
QPDs, therefore, are not very useful in answering the questions related to the joint probability 
for the components along different directions being in particular eigenstates. Those questions 
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are, however, answered by the QPD of Scully and co-workers 18.91. Their approach has 
been used for determining the joint probabilities for two components of spin-; [2]. The 
expressions for the probabilities so obtained differ from those of Feynman [I]. However, 
as pointed out in [21, Feynman introduced his expressions without providing any derivation 
or motivation. 

In this paper we imoduce a QPD suitable for determining the joint probabilities for 
the components of the spins in a, system of N spin-f. Our approach is to describe a 
spin-+ in terms of three two-state random variables corresponding to three components of 
the three-dimensional spin vector U. The components need not be orthogonal. The joint 
probabilities are then determined in terms of the averages of the random variables. The 
distribution so constructed is the desired QPD if the c-number averages are appropriately 
identified with the quantum expectation values. The identification of the averages of single 
random variables with the operator averages is, of course, suaightfonvard but associating 
the averages involving products of random variables with the operator products is, as is 
well known, ambiguous. The choice of different rules of association leads to different 
QPDs. However, in our approach, that choice is made at the end, which is unlike the usual 
approach [8,9] where the selection of the ordering is made at the beginning. This is because 
we proceed by constructing a classical distribution to mimic the quantum spins, whereas 
the usual approach is to construct the QPD by defining a generating function in terms of 
the averages of operators with respect to the given quantum state, therefore necessitating 
the choice of the ordering in the definition of the generating function. In the approach 
presented here one works only with c-numbers to arrive at the expression for the probability 
distribution in terms of c-number averages, which are identified with the operator averages 
to obtain the QPD. Moreover, our procedure admits a simple generalization to a system of N 
spin-;. We, of course, recover the results of Scully etul [2] as a special case. Interestingly, 
we find that Feynman's definition for the joint probabilities for two orthogonal components 
has, in fact, the structure of our expressions for the joint probability of three orthogonal 
components. 

Consider first a spin-l s stem described quantum mechanically by the spin operator 6 
whose components = e, .U ,  aeb = eb . + along the directions e,, eb (le,l = lebl = 1) 
obev the anticommutation relation 

2 y a  - 

and the commutation relation 

Quantum mechanically, the component of the spin-f along any direction can have the values 
+$ whose probability of occurrence is determined by the state of the system. 

We construct a classical analogue of the spin-f by assuming that its projection along any 
direction is a random variable capable of assuming two values 2ci. The system is described 
completely in terms of three random variables a, b and c which are the projections of the 
three-dimensional spin vector along the directions e,, eb and e,, respectively. The classical 
distribution function f(u,  6, c) of thespin is then evidently given by 

[Gee., $4 = i(ea x eb) . &. (2) 

where p ( t i , ~ j , c k ) ,  Lj,k = 1,2  (€1 = + 1 , ~  = -l), is the joint probability for the 
variables a, band c to have values ~ ( 1 2 ,  6j /2  and Et/?.. respectively. Note that there are eight 
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unknown joint probabilities p ( 4 ,  ej, 6 k )  and eight independent averages corresponding to the 
averages of the three random variables a, b and c; the averages of all their possible products 
and the normalization of the probabilities. The p(s;,  6 j .  4) can therefore be determined in 
terms of those averages by solving eight coupled equations obtained from (3). Those 
equations break up in two groups of four equations each. The solution of those equations 
leads to the following expressions for the joint probabilities 

i 
p ( E ; , E j , € k )  = 3 [ 1  +2Ei(U)+2€j'(b) + 2 € k ( C )  +4€i€j((ab) 

+ 4 € i € k  (UC) + 4 € j 4  (bC) + 8€i€j6k (UbC)] (4) 
where (A) denotes the average of A with respect to f (a, b,  c) .  The distribution f (a,'b, c) 
would represent a given quantum state of the spin-; if the averages in (4) are identified with 
those of the spin operators and their products in that state. It is straightforward to identify 
(a), (b)  and (c) with (6%). (&) and (Gec),respective1y. However, since the spin operators 
do not commute, the identification of the average of the products of a, b and c with those of 
the spin operators is ambiguous. The choice of different rules of association of the products 
of classical variables with those of the quantum operators leads to different quasiprobability 
distribution functions. One can, for example, choose the 'Wigner-lie' symmetric rule of 
correspondence whereby, invoking (1). 

ea ' e b  ~ e t c  1 (ab) + z((6ea6eb + 8eb6en) )  = - 4 
(ab4  --f +6+%)) + ((&A +&c&J&J 

+(a + 6, b + c ,  c + a) + (a + c, c + b, b + U ) ]  

= $(eb . ec) (&)  + (e. . e&&) + (e, . eb)(&J. (5) 

By substituting (5) in (4) we obtain the joint QPD for the three spin components of a spin-; 
as 

P ( 6 ; i , € j i . € k ) =  - 
23 ' [  
+qeje ,  . e h  + cjckeb. e, + E i 6 k e c  . e,, 

As a special case, note that the joint probabilities for two components, say, along e. and 
eb are given by 

p(e i . c j )  = a [ 1 + 2 . i ( 6 ~ ) + 2 ~ j ( ~ ~ ) + e , . e b l  CI) 
which are the same as the ones derived by Scully et al [2] in the symmetric ordering of 
the operators. Note that the joint probabilities for two components proposed by Feynman 
[1,2] involves the expectation values of three components. However, note from equations 
(6) and (7) that it is the joint probability of three components that involves the expectation 
value of three components, whereas the joint probability of two components involves the 
expectation values of only these two components. 

We have thus determined the complete joint QPD for a spin-;. One can easily identify 
the values of the parameters defining a state of the spin-; for which one or more joint 
probabilities become negative. The importance of negative probabilities in the context of 
Young's double slit experiment has been discussed in [1 ,2] .  

Next, we determine the joint QPD~fOr two spin-; systems described in terms of the 
classical variables (a,, 61, c1) and (az, 62, c2) which are projections of the two spins along 
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the directions (e", , e b l e c , )  and (ea2, ehe,), respectively. The classical distribution function 
of the combined system for the variables (a], CI; az, c ~ )  irrespective of the state of bl and 
bz, is clearly given by 

(8) 
Sixteen joint probabilities p ( 6 1 ,  6 j ;  6k. €1)  can be determined in terms of the averages by 
solving sixteen coupled equations for the averages of al. c1, az, CZ; the averages of all of 
their possible products and the normalization of the probabilities. These equations reduce 
to four decoupled sets each of  four equations. The solution of  these equations leads to 

1 
24 

P(~i,~j;~k.~i)=-[1+2~ii(al)+2~j(Cl)+2~k(aZ)f2~l{CZ) 

+ 4 E i ( € j b 1 C l )  + hk(Ulu2)  + Ei(UIC2)) + 4 € j [ € k ( C l Q Z )  f €i(CICZ)} f 4 € k ( U Z C Z )  

+ 8 € i { € j ~ r ( a t c l ~ z )  + € j ' 3 ( a l C l C z )  + €k€i (Ulazcz) ]  

+ € j € k € i ( C i U z C z )  + 1 6 ~ i € j € ~ € i ( ~ i ~ l ~ z ~ z ) J .  (9) 
By identifying the c-number averages in (9) with the expectation values as in the case of 
one spin-4, we obtain the joint QPD for two components of each of the two spin-;. A 
special case of interest is the joint probability p(ei. e j )  for the two spins to have the values 
e i j2  and e j / 2  in the directions e, and et, respectively. From (9) it straightforwardly follows 
that 

p ( ~ j , c j )  = $[l +2~i($:)) +Z<j(?:)) +4ejej(&2)a:))]. (10) 
If the two spins are in the singlet state 

where the states I i i, Ai) are the eigenstates of then (U:!)) = ( (I)) = 0 and 

so that 

p ( q .  E ~ )  = $[I - ciejea . eb]  (13) 
which is the same as the one derived by the other methods (see, for example, [6,7]). 
Note that the joint probability here is for the observables for two different spins, i.e. for 
commuting observables. Hence, the usual density matrix approach is also adequate for 
determining that joint probability. We will see that these joint probabilities are of  particular 
interest in determining the correctness or otherwise of the classical statistical description of 
the quantum theory. 

We can derive also the most general QPD, i.e. for the joint probability 
p(6i .  e j ,  6k; €1, em, en)  of the three components each of the two spins. It is found to be 
given by 

P(ei ,  ejv ck ;  Em, en) 
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The probabilities (14) can be used to arrive ,at Bell's inequality, which involves the 
measurement of the spin components along three directions, and show that its violation 
implies that the probabilities can be negative. For, if Pob is the joint probability for finding 
the spin-1 to be along the direction e, and the spin-2 to be along eb then by using the 
equation 

Pab = P(+ ,  Ej. ck; € 1 ,  f, En)  (15) 

where p ( ~ i .  e j .  6k; q, E,, E , )  is the probability that the spin-1 has the values 4 2 ,  ~ ~ / 2 . 6 ~ / 2  
and the spin-2 has'the values E I / ~ ~  em/2, ~ . / 2  along the directions e., eb,  e,, respectively, 
it then follows that 

j .k . i ,n  

~.~ 
Pab + Pbc - Poc = c [ p ( + ,  6 j s  Ek; cl, +, -1 f p ( - ,  +, € 1 ;  Em, Em, +) 

+ p ( + ,  +, € 1 ;  Em, +, +) - P ( + ,  -, € 1 ;  Em, - 9  +)I. (16) 
Note from (13) that the probability for the two spins to be aligned parallel to the same 
direction is zero, i.e. 

CP(E, ~ j ,  ~ k ;  E,, en)  = P(Eir E, 6 k ;  et, 6 ,  6") = C P ( E ~ ,  ~ j ,  E ;  61, e m ,  E )  = 0. (17) 
Hence it follows that if the joint probabilities are classical, i.e. positive, then the individual 
terms in (17) should vanish. In that case (16) reduces to 

pab + Pbc - P m  = p ( + ,  -, +; -, +, -1 + p(-,'+, -; +, 

Pub + Pbc - Pac > 0. 

+) (18) 

(19) 
The inequality (19) is Bell's inequality whose violation would, therefore, imply that the 
underlying joint distributions are negative, i.e. non-classical. By using the expression (13) 
in (19) it is clear that the inequality is violated, for example, if the three vectors e,, e b ,  e, 
are coplanar such that the vector eb lies between the other two at an angle of n/3 with each 
of the. others. 

The method outlined above can be generalized to N spin-; systems. It is not difficult 
to show that the joint probability p ( ~ i , ,  cj l ,  E K , ;  t i2 .  q Z ,  Ek2; ... E;#,  6jN, 6kN) for the spins 
1,2,. . . , N to have components (ci,/2, ~ j , / 2 .  ta,/2); ( ~ i , / 2 , ~ , ~ / 2 ,  6k2/2); . . . ( ~ ~ ~ / 2 ,  ~j,/2, 
ekN/2) along the firections (e;, i e b , ,  ec,); (e;;,  e & ~ , ~ e ; ; ) ; ~ .  :;~(e&, e&;~;e;;); respeciively~is 
given by 

which, for classical positive distributions, would imply [3] 

~~~~~~~.~~ 
~ .~~~ ~~ 

~ ~~~ ~~~~~~~~~~~~ 

E i i , a l , E j , b ~ , E k I C l . E i ~ ~ z r E j ~ b z , E k z C ~ .  . ..,EiNU~.Ej~bN,EknC~]) ] . (20) 

The explicit expression for the joint probability, for example, for one component of each 
of the spins is given by 
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The averages in (21) refer to different spins. Hence, that result is derivable also by using 
the density matrix approach. 

The expressions derived in the foregoing can be easily used to obtain the joint 
probabilities for spin-S, because the spin4 corresponds to the fully symmetric state of 
N(= 2s) identical spin-; systems. We can, thus, of course, determine the QPD for spin- 
S from the expressions written here in terms of individual spin operators but it will be 
interesting to be able to Write the joint probability in terms of the collective operators. 

In conclusion, we have obtained a QPD for the joint probabilities for the components 
of the spins in a system of N spin-; in terms of the expectation values of spin operators. 
The joint probability involving m < 3 components of each of the spins contains expectation 
values of the products of up to mN operators. 
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